Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs

Identifieur interne : 000921 ( Main/Repository ); précédent : 000920; suivant : 000922

Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs

Auteurs : RBID : Pascal:13-0189974

Descripteurs français

English descriptors

Abstract

Thermal-impedance models of single-finger and multifinger InGaP/GaAs heterojunction bipolar transistors (HBTs) are extracted from low-frequency S-parameters that are measured on wafer and at room-temperature, and from temperature-controlled dc measurements. Low-frequency S-parameters at room temperature are accurate for extracting thermal corner frequencies. However, the dc value of the thermal impedance depends on the emitter resistance and the dc current definitions of the HBT model; hence, they need to be extracted together from temperature-dependent dc measurements. The resulting thermal-impedance model explains the low-frequency dispersion well at varying bias conditions, and it is suitable for nonlinear circuit analysis.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0189974

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs</title>
<author>
<name sortKey="Sevimli, Oya" uniqKey="Sevimli O">Oya Sevimli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering, Macquarie University</s1>
<s2>North Ryde 2109</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>North Ryde 2109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parker, Anthony E" uniqKey="Parker A">Anthony E. Parker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering, Macquarie University</s1>
<s2>North Ryde 2109</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>North Ryde 2109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fattorini, Anthony P" uniqKey="Fattorini A">Anthony P. Fattorini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>M/A-COM Technology Solutions, Sydney Design Center</s1>
<s2>North Sydney 2060</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>North Sydney 2060</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahon, Simon J" uniqKey="Mahon S">Simon J. Mahon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>M/A-COM Technology Solutions, Sydney Design Center</s1>
<s2>North Sydney 2060</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>North Sydney 2060</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0189974</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0189974 INIST</idno>
<idno type="RBID">Pascal:13-0189974</idno>
<idno type="wicri:Area/Main/Corpus">000D44</idno>
<idno type="wicri:Area/Main/Repository">000921</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gallium phosphide</term>
<term>Heterojunction bipolar transistors</term>
<term>Impedance</term>
<term>Indium phosphide</term>
<term>Low frequency</term>
<term>Modeling</term>
<term>Network analysis</term>
<term>Non linear circuit</term>
<term>Room temperature</term>
<term>Self heating</term>
<term>Temperature dependence</term>
<term>Temperature effect</term>
<term>Temperature measurement</term>
<term>Ternary compound</term>
<term>Thermal behavior</term>
<term>Thermal model</term>
<term>Transmitter</term>
<term>Wafer</term>
<term>s parameter</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Comportement thermique</term>
<term>Transistor bipolaire hétérojonction</term>
<term>Modèle thermique</term>
<term>Impédance</term>
<term>Basse fréquence</term>
<term>Paramètre s</term>
<term>Pastille électronique</term>
<term>Température ambiante</term>
<term>Mesure température</term>
<term>Emetteur</term>
<term>Effet température</term>
<term>Dépendance température</term>
<term>Circuit non linéaire</term>
<term>Analyse circuit</term>
<term>Autoéchauffement</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Composé ternaire</term>
<term>InGaP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal-impedance models of single-finger and multifinger InGaP/GaAs heterojunction bipolar transistors (HBTs) are extracted from low-frequency S-parameters that are measured on wafer and at room-temperature, and from temperature-controlled dc measurements. Low-frequency S-parameters at room temperature are accurate for extracting thermal corner frequencies. However, the dc value of the thermal impedance depends on the emitter resistance and the dc current definitions of the HBT model; hence, they need to be extracted together from temperature-dependent dc measurements. The resulting thermal-impedance model explains the low-frequency dispersion well at varying bias conditions, and it is suitable for nonlinear circuit analysis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEVIMLI (Oya)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARKER (Anthony E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FATTORINI (Anthony P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAHON (Simon J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Engineering, Macquarie University</s1>
<s2>North Ryde 2109</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>M/A-COM Technology Solutions, Sydney Design Center</s1>
<s2>North Sydney 2060</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1632-1639</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000504128660200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0189974</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thermal-impedance models of single-finger and multifinger InGaP/GaAs heterojunction bipolar transistors (HBTs) are extracted from low-frequency S-parameters that are measured on wafer and at room-temperature, and from temperature-controlled dc measurements. Low-frequency S-parameters at room temperature are accurate for extracting thermal corner frequencies. However, the dc value of the thermal impedance depends on the emitter resistance and the dc current definitions of the HBT model; hence, they need to be extracted together from temperature-dependent dc measurements. The resulting thermal-impedance model explains the low-frequency dispersion well at varying bias conditions, and it is suitable for nonlinear circuit analysis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03G01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Comportement thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermal behavior</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Comportamiento térmico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transistor bipolaire hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Heterojunction bipolar transistors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle thermique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thermal model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo térmico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Impédance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Impedance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Impedancia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Basse fréquence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Low frequency</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Baja frecuencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Paramètre s</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>s parameter</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Parámetro s</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Pastille électronique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Wafer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Pastilla electrónica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mesure température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Temperature measurement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Medida temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Emetteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Transmitter</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Emisor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Circuit non linéaire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Non linear circuit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Circuito no lineal</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Analyse circuit</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Network analysis</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Análisis circuito</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Autoéchauffement</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Self heating</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Autocalentamiento</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000921 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000921 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0189974
   |texte=   Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024